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worin
Ny =Na/(L+exp{(Ex—eV—Ex)/(kT)})
(A, 14)

die Dichte der ionisierten Akzeptoren und N, die
Dichte der gesamten Akzeptoren bedeutet. E, ist die
Energie des Grundzustandes der Akzeptoren.

Unter der Voraussetzung Er—E,> kT folgt
No"=~Nj: Alle Akzeptoren sind negativ geladen
(mit Elektronen besetzt). Die Neutralitdtsbedingung
lautet dann statt (A, 11)

n0=ND/(l+E’)——NA. (A, 15)

Das Entwicklungsglied erster Ordnung ist unter die-
ser Voraussetzung sehr klein gegeniiber dem ent-
sprechenden Gliede von Np in Gl. (A, 10), so da}
sich an (A, 10) nichts dndert. Setzt man also die ge-
anderte Neutralitatsbedingung (A, 15) in (A, 10)
ein, so folgt:

7 H. Brooks, Advan. Electron. 7, 87 [1955], vgl. S. 157 f.
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—n—i—ND*—NA'
= {ng+ (ng+Ny) (1 — E‘Pi—&)} :

Es ist daher statt (A, 12) jetzt
N=ng+ (ng+Na) (1= (ng+N4)[Np) (A,17)

in die DeBvye-Hucker-Lange Lp [Gl. (A,1)] einzu-
fiihren.

Fir p-Leiter sind in (A, 17) n, durch p, zu er-
setzen und N, und Np zu vertauschen.

Mit (A, 12) bzw. (A, 17) identische Gleichungen
wurden bereits von Brooks 7 und Herrine 8 benutzt
im Zusammenhang mit Untersuchungen zum Pro-
blem der Streuung von Elektronen und Lochern an
abgeschirmten geladenen Punktfehlstellen.

Herrn M. J. Gerevns vom Philips-Rekencentrum,
Eindhoven (Holland), danke ich fiir die Ausfithrung
der numerischen Rechnungen.

8 C. Herring, unveroffentlicht.

Berechnung und Anwendung der Kehrmatrix der nichtlinearen Gitterstatik
fiir Alkalihalogenide

Lore Kern-Bauscu

Institut fiir Theoretische Physik der Universitdt Miinchen

(Z. Naturforschg. 21 a, 798—806 [1966] ; eingegangen am 16. Midrz 1966)

Mit der Theorie der klassischen nichtlinearen Gitterstatik lassen sich bei Ionenkristallen
beliebige Storkonfigurationen im Kristallgitter atomistisch beschreiben. Die Losung der nicht-
linearen Gittergleichungen gelingt, wenn die Kehrmatrix fiir den linearen Anteil der Gitterglei-
chungen bekannt ist. Die Kehrmatrix wird fiir Ionenkristalle vom NaCl-Gittertyp aufgestellt und
fiir die Alkalihalogenide LiF, NaCl, NaBr, KCl, KBr und KJ numerisch berechnet. Mit den Ergeb-
nissen wird ein quantenmechanisches F-Zentren-Modell fiir die verschiedenen Alkalihalogenide
behandelt und das gekoppelte Gleichgewichtsproblem Gitterauslenkung— Elektronenkonfiguration
gelost. Die Berechnung der Gitterverschiebungen und des Variationsparameters der Wellenfunktion

fiir den 1s-Zustand erfolgt durch Iteration.

Vom atomistischen Standpunkt aus stellt ein Kri-
stall ein kompliziertes System von Atomkernen und
Elektronen dar. Wir wissen aber, dal in Ionen-
kristallen die Elektronen stark an die einzelnen
Kerne gebunden sind; deshalb kann man dort in
guter Naherung die Kristallelektronen kollektiv mit
den Atomkernen des Gitters zu Ionen zusammen-
fassen, die in ihrer periodischen Anordnung die
Kristallstruktur bestimmen. Lokalisieren wir die
Gitterteilchen in ihren Gleichgewichtslagen und ver-
nachldssigen die oszillatorischen Bewegungen um

die Ruhelagen, so haben wir als Modell fiir einen
idealen Ionenkristall ein streng periodisches statisches
Punktgitter.

In der Natur finden wir stets nur Realkristalle
vor, deren Symmetrie durch Storzentren verletzt ist.
Fiir den Fall, dal diese Zentren auf einen sehr
kleinen Bereich lokalisiert sind, gelingt es bei Ionen-
kristallen hidufig, die physikalischen Eigenschaften
der Storung durch quantenmechanische Modelle zu
beschreiben, die nur wenige Elektronen und Ionen
umfassen. Das iibrige Gitter darf als Punktgitter
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NICHTLINEARE GITTERSTATIK FUR ALKALIHALOGENIDE

klassisch behandelt werden, wozu sich die in den
Arbeiten von Fues, Stumpr und WanL ! entwickelte
klassische nichtlineare Gitterstatik eignet.

Eine wesentliche Voraussetzung fiir die ato-
mistische Losung der klassischen nichtlinearen Gitter-
gleichungen ist die Bildung einer Kehrmatrix fiir
den linearen Amnteil der Gittergleichungen. Sie ist
eine gitterkonstante Grofle des idealen Kristalls und
nicht von speziellen Stérkonfigurationen abhingig.
Ankniipfend an eine Arbeit von Gross und WasL 2
bringen wir hier eine genauere Berechnung der
Kehrmatrix fiir verschiedene Kristalle vom NaCl-
Gittertyp. Dazu gehoren insbesondere alle Alkali-
halogenide mit Ausnahme der Cs-Salze 3.

Mit den Ergebnissen behandeln wir anschliefend
das Gleichgewichtsproblem Gitterauslenkung — Elek-
tronenkonfiguration am F-Zentrum. Zur iterativen
Berechnung der Gitterauslenkungen und des Para-
meters der Wellenfunktion fiir den 1s-Zustand als
Funktion der effektiven Massen beniitzen wir die
von WacNer ¢ angegebene F-Zentrenfunktion.

§ 1. Nichilineare Gitterstatik

Wir tragen hier nochmals die fiir die folgenden
Rechnungen notwendigen Einzelheiten aus dem Ge-
biet der nichtlinearen Gitterstatik zusammen. Die
Kristallbausteine seien in ihren idealen Gitterorten
R durch die dreikomponentigen Indizes t = (i; , iy,
i3) bzw. M= (my, m,, m3) charakterisiert. Sie sollen
diese Nummerierung auch dann noch beibehalten,
wenn sie sich infolge statischer Fehlordnungen in
den neuen Lagen

=N+ Di (1)
befinden.

Die Struktur eines stabilen Kristalls ist durch ein
Minimum der potentiellen Wechselwirkungsenergie
samtlicher Kristallbausteine bestimmt, die Idealstruk-
tur durch das absolute Minimum. Da wir nur Zwei-
teilchenwechselwirkungen haben 5, entstehen die
Krifte durch Superposition. Somit erhalten wir nach
Variation der potentiellen Energie

Vili= —gi=; Pim (Y — i) (2)

1 E. Fues u. H. Stumer, Z. Naturforschg. 10a, 1055 [1955].
— E. Fuss, H. Stumer u. F. WanL, Z. Naturforschg. 13 a,
962 [1958]. (Diese Arbeit soll im folgenden mit (I) be-
zeichnet werden.) — H. Stumer, Quantentheorie der Ionen-
realkristalle, Springer-Verlag, Berlin 1961.

2 H. Gross u. F. Wanr, Z. Naturforschg. 14a, 285 [1959].
(Wird im folgenden mit (II) bezeichnet.)
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das System der Gittergleichungen
fizn,;pim (Ym —1i) 3 (3)

fi sei eine ,,&uBere“ Kraft, wie wir diejenigen Krifte
bezeichnen wollen, die nicht durch eine Wechsel-
wirkung mit reguldren Gitterteilchen zustandekom-
men.

Unter der Annahme, dafl die Abstandsianderung
[ Y —Yi|, die durch Verriickung zum idealen Gitter-
abstand hinzukommt, klein gegen die Gitterkonstante
ist, kann jede Kraftkomponente auf der rechten
Seite von (3) in eine TaviLor-Reihe um die Ruhe-
lagen des idealen Gitters entwickelt werden, und wie

in (I) und (II) ergibt sich
;Aim [Hm — ] =¥. (4)

Dabei wurde fiir die TensorgroBen \/ P (Rm — Ri)
die Bezeichnung Aiy, gesetzt;

=t~ ; Bim (5)

mit i als hohere nichtlineare Glieder der Krifte
im gestorten Gitter.

Gemaf (II) haben die Tensorkomponenten (Aim ) iz
folgendes Aussehen:

. ( r? (Sik—fri;n,i Zim, k % . xim.ir::im,k %) Py

mit Ly — %=t = (Tim,1> Limz2> xim,3) und lriml
=r. Das Potential P, ist nur vom Abstand ab-
héangig.

Schreiben wir (4) um, so gilt (nach Umsum-

mation) 8
;Aim'nm =fi' (7)
Eine formale Umkehrung fithrt auf die Gleichung
szszi 5. (8)

Die Auslenkungen kommen also durch Uberlagerung
derjenigen Wirkungen zustande, die durch die an
den verschiedenen Punkten angreifenden Krifte ent-
stehen. Dies gestattet eine Bestimmung der Reziprok-
matrix R = A~ iiber die Einzelkraftlosungen. Setzen

3 Handbuch d. Phys. VII/1, Springer-Verlag, Berlin 1956,
S. 86.

4 M. Wacner, Z. Naturforschg. 15a, 889 [1960] u. 16a,
302 u. 410 [1961].

5 Polarisationskrafte sind Vielteilchenwechselwirkungen, die
aber in dieser Arbeit nur pauschal durch eine Abschirm-
konstante erfallit werden sollen.

6 S. Anm. 1, Arbeit I.
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wir niamlich eine normierte Einzelkraft am Punkt f
in Richtung ¢ an, so erhilt man an der Stelle m
in Richtung b die Verschiebung

(fe) __

Ymp —Rmb, fe. (9)
(fe)

Die Gesamtheit der yu, kann man als Verschie-
bungsvektor in einem 3/N-dimensionalen Raum auf-
fassen. Durch geeignete Transformation der Basis-
vektoren suchen wir fiir die Transformation der
Komponenten

ygﬁ)) = Z Fgrfﬁi)lo afrc) (10)

g

die Matrix so festzulegen, dal} die meisetn o, un-
bedeutend klein werden. Aus der Kontinuumstheorie
kennen wir die Losung fiir eine Einzelkraft?. Es
liegt daher nahe, die Transformation (10) als eine
Reihenentwicklung in den a, aufzufassen, die als
wesentlichstes Glied unter den FU), die erwihnte
elastische Losung fiir eine Einzelkraft enthilt. Die
weiteren Glieder sind dann Korrekturfunktionen zur
Verbesserung der Kontinuumslosung in den Be-
reichen, in denen die wirklichen Auslenkungen stark
von den nach der Elastizitdtstheorie berechneten
Werten abweichen.

Zur Durchfiihrung dieses Programms definiert
man die Matrizen F als diejenigen Werte, die aus
den elastischen Losungs- bzw. Korrekturfunktionen
Spels(Nsm) durch Einsetzen der idealen Gitterab-
stinde

R — R = Rim (11)

hervorgehen.
Mit ¢ als Richtung der Kraft und b als Richtung

der Auslenkung sind die Syc|s Tensoren zweiter
Stufe; sie enthalten 9 Funktionen. Wir setzen also

F9 = Speio (Rim) (12)

Die Transformationsmatrix Sy 1(Fim) soll mit der
elastischen Losung, dem sog. System der Funda-
mentalintegrale 8, identifiziert werden. Diese Funk-
tionen geben mit wachsender Entfernung vom An-
griffspunkt der Einzelkraft die Verschiebungen im
diskreten Gitter immer genauer, wihrend sie im
Storzentrum eine Singularitdt besitzen und auch in
der Umgebung des Kraftaufpunktes sehr grole Ab-
weichungen aufweisen. Wir werden daher im néch-
sten Paragraphen fiir Aufpunkt und Umgebung noch
geeignete Definitionen treffen.

7 E. Kroner, Kontinuumstheorie der Versetzungen und
Eigenspannungen, Erg. angew. Math. 5, Springer-Verlag,
Berlin 1958.
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Mit (4) erhalten wir ein endliches, in den o/®
lineares Gleichungssystem
Z Aia, mb (Sbcla (mfm) e Sbcla (%fl)) a«(f) = 6if 6(10 .
m,b,o (13)

Zur Korrektur der elastischen Losung auf die ato-
mistische geniigt es, aus dem hochdimensionalen
Gleichungssystem (13) nur wenige Gleichungen zu
beriicksichtigen, da die restlichen das Ergebnis
praktisch nicht beeinflussen.

§ 2. Die Tensoren Sy, 1 und Aim

Als Losung der elastischen Differentialgleichungen
ergeben sich jeweils 3 Verschiebungsvektoren fiir
eine Einzelkraft am Punkt = (f,, f5,f5) in 2-, y-
oder z-Richtung, die wir in dem symmetrischen
Tensor (12) zusammenfassen, der dann mit | Ry |
=r=d|m—f| folgende Gestalt annimmt:

Spcii= - (Si). (14)

Dabei ist
Si=a(m;—fi)*+b((my — fi)*+ (my—f,)%)
+c((mi— )% (mg — fr) 2+ (mi— f;)2(my— f;)?)
+d(mg—fr)* (my —f)?; (15)
Sik=e((m;—fi)® (mx— fz) + (mi— f) (mg— fz)®)
+flmi—fi) (mi— fr) (mi—f1)?;
i, k1=1,2,3; iFk=+1=i (i, k1 stets voneinan-
der verschieden) ;
a=3(6cyycyy ey’ —c® —2¢pp¢44);
b=12(cyy® + 11 €44) 5
c=3(4cs’®+ey® —cp® +10¢qy 64 —2¢15¢44) 5
JZ 3 (8 C442 + 2 Cy4 C11 — 6 C12 Cyq4 + 3 0112 == 3 C122) 5
e=3(2cy?+cracay+ cygcry+erycia— 15?3
f=6(4 cyy®+5 c1a ey — cyg €11 — €11 €12+ €15%)
Die cu» sind die Voicrschen elastischen Konstanten.
Wir verwenden die gleichen Ersatzpotentiale wie
in (II). Bezeichnet ay die sog. MapeLuNGsche Kon-
stante 9, die den jeweiligen Gittertyp beriicksichtigt,
d den kiirzesten Ionenabstand, e die Elementarladung

und 7 den AbstoBungsexponenten, so lautet fiir die
6 nichsten Nachbarn m’ des betrachteten Aufpunk-

8 E.Kroéner, Diplomarbeit, T. H. Stuttgart; — (II).
9 MapkeLune, Phys. Z. 1918, 524 [1918].
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tes i die Wechselwirkungsenergie

ay e?

2
Pin (|Riw|=d) = = T+ 5 (16)

im iibrigen Gitterbereich (m = m’)
P (| Rim)) = d| ;'::” (s. Anm. 19,  (17)

Fiir alle Punkte m = m’ erhalten wir mit (6) die
Kugelflichenfunktionen 2. Ordnung

AP = (A0 Vap= T Trome (Aw)  (18)
mit
A =2(my—3,)2 = (my—iy) 2 — (my— i)
A =3(my—1iy) (my— i)
u,v,w=1,2,3; uFvFwiku.

Fir m"—i=(£1,0,0); (0, £1,0); (0,0, =1)
addiert sich zu (18) der Tensor

2
A = (A8 V=5 (4)  (19)
mit
+1 y
Ayu= ?7'6—1)1(’”14 - 111)2
— L ((my— i) + (miy— i) ?);3
A;lv:O; u,v,w=1,2,3; u#v#w*u—

In guter Naherung kann man die Elektronenhiillen-
polarisation dadurch beriicksichtigen, dal man den
CouromB-Anteil (18) mit einem Abschirmfaktor !

I'=1/(1+7) (20)
multipliziert. Man erhalt somit:

A=A T 4 A% (21)

§ 3. Die Normierungskonstanten as

Zur numerischen Bestimmung der Kehrmatrix
wahlen wir eine Einzelkraft, die am Gitterpunkt
f=0=1(0,0,0) in Richtung c=1 angreift. Allen
Funktionen Sj; s ordnen wir im Ursprung den Wert
Null zu, mit Ausnahme der GroBe Sp. ¢, fiir die wir

Stc10(Rim) =0 mipc (22)

definieren.

Entsprechend dieser Festlegung folgt nach (10)
und (22) fiir die Auslenkungskomponenten des An-
griffspunktes in den Richtungen b=1, 2, 3:

10 1+ “ fiir Anionen.
11 H. RampacHER, Z. Naturforschg. 17 a, 1056 [1962] ; — (II).
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(23)

Diese Definition und die folgenden Korrekturen der
elastischen Losung in der Umgebung des Null-
punktes sollen in Abb. 1, dem Modell eines Kristalls
mit NaCl-Gitter, veranschaulicht werden.

Um eine moglichst genaue Beschreibung unseres
NaCl-Gittertyps mit Hilfe der Fundamentalintegrale
zu erreichen, betrachten wir an Stelle eines singu-
laren Punktes ein ,,Singularitdtsgebiet®, in das wir
die 6 nidchsten Nachbarn des Kraftzentrums mitein-
beziehen. Fiir diese 6 Ionen brauchen wir im NaCl-
Gitter nur die Auslenkungskomponenten in Richtung
b=1 anzugeben, die Komponenten in den anderen
Raumrichtungen verschwinden, da sich die entspre-

Yoo = y(u'bl) = g Oof Op1 -

chenden Reaktionskrifte aus Symmetriegriinden
gegenseitig wegheben:
Y(x1,0,00= 2101, (24)

Y0.+£1,000= Y(0,0.£1)b =ﬁ1 Opt -

Wir wollen voraussetzen, daB das Verhiltnis der
Auslenkungskomponenten fiir die iibernachsten Nach-
barn durch die Fundamentalintegrale richtig wieder-
gegeben wird und diese Gitterteilchen von den
weiter auBen liegenden nur durch eine andere Nor-
mierungskonstante unterschieden werden miissen:

Yoy = ay Spr 1 (R (25)
mit
m”:(il, +1,0); (£1,0,£1); (0, £1, £1).

Fiir das iibrige Gitter, d. h. fiir alle Punkte m ==m’,
m”, begniigen wir uns mit dem Fundamentalintegral
und verzichten auf weitere Korrekturfunktionen in
der Annahme, daf} in diesem Bereich keine allzu-
groBlen Abweichungen mehr vorliegen:

(ol)

Ymp =3 Sp11(Rm) . (26)

Mit diesen 5 Funktionensystemen stellen wir jetzt
die Reziprokmatrix auf.

Als Ausgangspunkt fiir die numerische Berech-
nung der Normierungskonstanten a, dient das System
der 3N Gleichungen (13). Zur Bestimmung unserer
5 verschiedenen a, benétigen wir nur 5 linear unab-
hingige Gleichungen und greifen dazu diejenigen
fiir die Aufpunkte

i=(0,0,0); (1,0,0); (2,0,0); (0,1,0);
(0,1,1) (27)

mit @ =1 heraus. Wir wollen die betreffenden Glei-
chungen in dieser Reihenfolge mit I —V durchnu-
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merieren und schreiben:
d3

10 62

Aiag+Biay +Cify+Diay+ Ejag =6
(i=I,...,V). (28)
§ 4. Numerische Berechnung der Koeffizienten

Zur praktischen Auswertung der Koeffizienten von
(28) beniitzen wir unter Beachtung der Elektronen-
hiilllenpolarisation die Tensoren (14) und (21),
wobei der Angriffspunkt der Kraft stets im Ursprung

L. KERN-BAUSCH

belassen wird, also f; =f,=f;=0. 4;, B;, C; und D;
lassen sich nach kurzen Rechnungen anschreiben ; auf
umfangreiche Summationen fiihrt dagegen die Be-
rechnung von E;, die aus Termen der Art

2 Aia, mp Sp111(Rm) (29)
m, b

bestehen. Die Berechnung erfolgte mit einer elektro-
nischen Rechenmaschine, und die Gittersummation
wurde iiber 50 Gitterabstinde ausgefiihrt. Die Sum-
mation tiiber einen noch grofleren Bereich ergibt
praktisch keinen Beitrag mehr.

Fir die Koeffizienten von (28) erhalten wir folgende Ausdriicke:

A= —Yax(n—1);
Di=025T(a—b+c—d+6e) ;
An=}tay(n+1) -2T

Bi=%ax(n+1) -4 T}

Ci=—jax+47T;

Er— I'(0,06332 (a — b) —0,02636 (c —d) — 0,46100 ¢ — 0,15141 f);
By=—4$an(n-1) +0,25I';

Cr=0,7071LT;

D1 =0,70711(( — 4 ay +0,87478 I') (a + b +c) —0,21466 I"e) ;
En= (i a(n+1) —0,867662 I') a +I'(—0,14985 b —0,10006 ¢ — 0,06941 d + 0,27270 ¢);

A =025T

Bir=gsay(n+1) —2,07407 I';

Cm= —0,500881;

Dy =0,70711 I'(0,23054 a + 0,36662 b + 0,23054 ¢ +0,06804 d — 1,00374 ¢) ;
Eqi= (52 (0,28270 — ) +0,30199 ') a+ (— 4 ay 0,07155 +0,02805 ') b_ i
+ (= 32y 0,28622+0,15536 I') ¢ + I'(—0,02867 d +0,27536 ¢ + 0,06858 f) ;

Ary= —toy+1T; By = 0,35355I;

Crv=—bay(y—1) —0,83211T; (30)

Drv=0,35355 {[}ay (9 +1) —1,96422 '] (a+c) + [$ay(n—1) +0,21466 I'] b

+[—hay+1,08944 '] d —0,98446 I'e};

Erv=0,02333 T'a+ (— 15 oy +0,43587 I') b+ I'(0,09274 ¢ — 0,01651d + 0,40852 ¢ + 0,10412 f) ;

Ay=-0,353551"; By=0;

Cyv=—%ay+2,17889T';

Dy =0,35355{0,28551 I'(a+c) + [ — $ay(n—1) —0,00868 I'] b

[ —doy(n—1) —0,14710I'] d +0,27217 €} ;

Ev=[}ox(n+1) 0,1283 —0,21398 I'] a + {} ax ((7+1) 0,1283 — 0,30411) —0,17355I'} b
+ (bay (7 +1)0,1283 — 043717 I') ¢+ {} ay[ (+1) 0,1283 -0,14311] —0,09383 I'} d

+1'(0,01554 ¢ +0,00710 ) .

Wir lésen (28) fir Alkalihalogenide unter Ver-
wendung der Daten in Tab. 1. Fiir den NaCl-Gitter-
typ ist die Maperunc-Konstante oy, bezogen auf
den kiirzesten Ionenabstand, gleich 1,747565 12.
Das Ergebnis ist in Tab. 2. angegeben.

§ 5. Bestimmungsgleichungen fiir den Grundzustand
beim F-Zentrum

Nachdem die Reziprokmatrix vorliegt, konnen wir

die Gleichungen fiir Gitterstorungen losen. Als Bei-

12 Laxport-Bérnstein I/4, Springer-Verlag, Berlin 1955, S.
537.

spiel bringen wir hier die quantenmechanische Be-
schreibung von F-Zentren in Alkalihalogeniden, fiir
die die Auslenkung der Ionen und die Gestalt der
Elektronenwellenfunktionen in Abhéngigkeit von
den Gleichgewichtslagen der Gitterbausteine ange-
geben werden soll. Wir fithren die Berechnung auf
der Grundlage einer Theorie durch, wie sie von
Stumpr und Mitarbeitern ** entwickelt wurde.
Betrachtet wird ein Kristallvolumen mit einem
einzigen F-Zentrum. Nach Wacner 3 dient uns als

13 H. Srumer, Quantentheorie der Ionenrealkristalle, Springer-
Verlag, Berlin 1961; — s. a. Anm. %
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o avipe e re e
| c11 = 11,77
LiF ci2 = 4,33 2,010 | 0,696 | 0,5895 i
‘ C44 = 6,28
o= 4,68
NaCl ci2= 1,23 2,814 | 0,902 | 0,5257 8
lcaa= 1,19 |
: C11 = 3,87
NaBr* | ¢12 = 0,97 2,981 1,044 | 0,4893 8
C44 = 0,97
| C11 = 4,095
KCl le12= 0,705 | 3,14 0,820 | 0,5495 9
C44 = 0,630 |
Cc11 = 3,46
KBr c12= 0,58 3,293 | 0,922 | 0,5203 9
cqa = 0,505
l C11 = 2,67
KJ lci12= 0,43 3,526 1,087 | 0,4792 9
cyy = 0,42

Anm.: 1* Handbuch d. Phys. VII/1, Springer-Verlag, Berlin 1956, S. 197.
— 2* Born-Huane, Dynamical Theory of Crystal Lattices, Clarendon Press,
Oxford 1954, S.26. — 3* H. Rampacuer, Z. Naturforschg. 17a, 1056
[1962]; W. SmockLey, Phys. Rev. 70, 105(A) [1946]. — 4* Siehe § 2,
(20). — 5* H. B. Hu~rineToN, Solid State Physics 7, 276 [1958].

Tab. 1.

Ausgangspunkt die von der ScHrRGDINGER-Gleichung
des Gesamtsystems separierte SCHRODINGER-Gleichung
des lokalisierten Storstellenelektrons. An die Stelle
der Elektronenmasse tritt die effektive Masse my; ,
die die Wechselwirkung mit dem periodischen Gitter
beriicksichtigt:

k2

T et Ae+ Ve |Wa(Te, tn) =Un(tm) wa(Te, Im)

(31)

Die Kernfreiheitsgrade sind in 1,; zusammengefalit,
T, bezeichnet die Freiheitsgrade und n den Zustand
des Storstellenelektrons. Vy ist identisch mit dem
Eigenwert der Gitterelektronengleichung, dessen Be-
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stimmung &duflerst kompliziert ist; davon sehen wir
ab und beschreiben V' durch die potentielle Energie
des gestorten Gitters mit Hilfe von Ersatzpotentialen.
Wir setzen — unter Vernachlassigung einer CouLoms-
Abschirmung 4 —

- S (eoem 7b7 €eem
Vp=P(tn) - m‘?l)(lrm' T Irml")_’_ m¥o|tm—re| ’
(32)

P(1y) ist die Wechselwirkungsenergie des defor-
mierten Gitters unter Beachtung der Elektronen-
hiillenpolarisation. Der 2. Term beschreibt das Poten-
tial einer Anionenliicke im Ursprung, zu dem wir
noch den Ausdruck fiir die Elektron-Gitterion-Wech-
selwirkung hinzufiigen.

Zur Bestimmung der Wellenfunktion des Stor-
stellenelektrons verwenden wir das Variationsver-
fahren der Quantenmechanik 1. Wir beniitzen nor-
mierte Vergleichsfunktionen vom Wasserstofityp

Yu=Yn (re 9ﬂl(n)(rm)) ) (33)

deren Variationsparameter 39 noch von den Gleich-
gewichtslagen der Gitterbausteine und ihrem Gitter-
schwingungszustand [ abhdngen.

Die Elektronenenergie erhalten wir, indem wir
den Energieerwartungswert von (31) bilden; U,
wird jetzt eine Funktion der Variationsparameter
und der Kernlagen.

Aquivalent mit der Losung der ScHRODINGER-
Gleichung ist die Forderung, dal die Energie U, in
bezug auf die gewidhlte Wellenfunktion und die
Kernlagen minimal werden soll:

737;(}7 Un (rmaﬂl(n) (rm)) =0 (l= 1,2,...)
ViUn(rma ﬂl(”)) =0. (35)

und
Ersetzt man Vy durch den Ausdruck (32), so erhalt
man nach Ausfithrung der Integration fiir die Gln.

(34)

oo ‘ o p1 o2 o3
LiF e 1,42797 | —1,06631 J —0,96018 | — 0,93039 - 10-3 —0,99667 - 10—3
NaCl —0,89411 —0,64100 —0,47617 —0,55573 - 10—2 —0,59877 - 10—2
NaBr —0,97064 —0,71335 —0,53148 —0,91986 - 10—2 —0,98716 - 10—2
KCl —0,62622 —0,42628 —0,27109 —0,56065 - 10—2 —0,65100 - 102
KBr —0,66010 —0,45911 —0,28935 —0,87233 - 102 —1,01220 - 102
KJ —0,74629 —0,53974 —0,35017 —1,71353 - 102 —1,94768 - 10—2

Alle Werte sind in d3 - e=2 - cm dyn—1 angegeben.

14 Die CouLoms-Abschirmung ist bei der stark lokalisierten
1s-Funktion sicher nur in geringem Mafle ausgebildet.

Tab. 2.

15 H. Rampacuer, Z. Naturforschg. 18a, 777 [1963]; — s. a.
Anm. 13,
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(34) und (35):

sg (T(B™) +Q(tw, B™) =0 (36)
bzw.
b
~ViP(tm) = Vi (Q(Tm,ﬂz(”)) = ; |r'm'|',,’> (37)
=—0i = ¥
mit T (5,) = — B ft,u* Ay de
und (38)

€ |2
Q(tm, /™) = m%:oe‘“ (— [T ] +ee / l'{"lfg_’re'[ d")-
f; ist die Storkraft auf das Gitterion am Ort 1;. Man
kann zeigen, dal unter der Annahme kleiner Aus-
lenkungen die durch ein im F-Zentrum gebundenes
Elektron entstehenden Gitterstorungen

Dm =‘Z Ry -1

1#+0

(39)

hervorgerufen werden durch Krifte f; von der
Form:

£y = DPE 4 D A0y, [y, ]

Die f; resultieren aus einem Dipolterm der Elektron-
Gitter-Wechselwirkung und einem kompensierenden
AbstoBungsglied. Bei der Beschreibung der Absto-
Bung beschranken wir uns auf einen konstanten und
einen linearen Anteil.

Fiir den Grundzustand des F-Zentrums setzen wir
nach Wacner die Wasserstoffvergleichsfunktion

yis=a"2(B19) " exp{ - 19 | o}
an. Da wir nur den 1s-Zustand behandeln wollen
und uns aullerdem beim F-Zentrum mit einem ein-
zigen Variationsparameter begniigen, definieren wir
g1,

Um die Bestimmungsgleichungen (36) und (37)
anschreiben zu konnen, benétigen wir die Energie-
erwartungswerte 7' () und Q(tm,f) (38). Es ist

« 1 3 5]
f"/’ls?% (192 %) Y dr=—f? (42)

(40)

(41)

Wir entwickeln f; (40): f; =f© + 4, (Do —Yil

L. KERN-BAUSCH

und

| wi1s |2
| tm—Te |

1 1
I TN T B Y T
1 8+ o ](4[3)

(36) und (37) lauten dann:

P gt Zenesll+26]tn]) exp{—25]tal} =0
e (44)
und

(Y (b emee

f‘ - v’ (mﬁo( | v |7 [Tm]

-+l exp{-28|tal})).  (45)

§ 6. Die Kraftgleichungen und die Koeffizienten
der reziproken Gittergleichungen

Beim F-Zentrum setzen wir nidherungsweise einen
Einflu der Storkréfte bis zu den Nachbarn 3. Ord-
nung voraus, d.h. wir betrachten die Gleichungen
der 26 Teilchen des Kubus mit der Kantenldnge 2d,
in dessen Mitte das Storzentrum lokalisiert ist. Da
es sich um ein vollkommen kugelsymmetrisches
Problem handelt, geniigt es, jeweils die Auslenkungs-
komponenten in Richtung 1 der Teilchen mit der
Nummer 1, 7 und 19 (s. Abb. 1) zu berechnen.

(7.31,0)
|

17, J
O/ % N "

24 (101 ;stﬁ(_ofo.-v Tl A
(-1-1,-1) (0.-1,-1) (1-1,-1)

und erhalten dann fiir die z-Komponente der Kraft auf das Teilchen i = (1) =(1,0,0) :

k(1) 3 =k(1);© — (4¢,0,0(-1,0,0) 117y (1)1 .

Fiir die Teilchen (7) =(1,1,0) und (19) = (1,1, 1) ergibt sich:

E(7);=k(7)1© — [ (o(-1, -1,0) 11+ Do(-1, -1,00) 12] ¥ (7)1

und

k(19);=k(19),©@ — [ (Ao(-1, -1, -1)) 11+ (Ao(-1, -1, =) 12+ (Ao(-1, -1, -1)) 1] 'y (19) 4 .

OAnionen e Kationen
Abb. 1.
(46)
(47)
(48)
(49)
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Der symmetrische Tensor A,m berechnet sich mit (45) analog § 2. (47), (48) und (49) lauten dann:
2 e
k(1) = G Bax— (14+28d+ 2 d)exp{ 28} +y (1), & [hau(n+1) —2(1+26d
2 F2REL2f d)exp{~28d}]; (50)
K(D1= g pG+V28d+20d) exp{~2pdV2}
+y(D) 5 GV2+28d+2V2F 3+ 4 ) exp{~28dV2}; (51)
k(19)i= — Vo G+3V3Bd+20 ) exp{-24dV3)
—y(19); 5 GV3+4fd+ $V3R &+ 4 Pexp{-2pdV3}. (52)

Nachdem wir die auf die Gitterbausteine wirkende
Kraft kennen, benotigen wir, um die Auslenkungen
zu berechnen, in unserer reziproken Gittergleichung
(39) noch die Elemente der Kehrmatrix:

Fir die Auslenkungen der Teilchen m mit der
Nummer 1, 7 und 19 ergeben sich unter Beachtung

Es ist ohne weiteres einsichtig, wie die iibrigen
(Rwi) a» gebildet werden.

Fiir die Py ergeben sich bei den Alkalihalogeni-
den LiF, NaCl, NaBr, KCl, KBr und KJ folgende

numerischen Werte:

der Symmetrieverhiltnisse im Gitter folgende durch +0,17045  +0,50277  +0,04860
& twendi S W e Mo s LiF (Ptg) = +0,12569 —0,17934 —0,21010
1€ no en. 1gen dummationen uber die My entste- 40,01215 —0,21010 —0,65828
henden Gleichungen:
—0,07874 +0,08269 —0,00701
y(m);=Pu k(1) +Prk(7);+Pik(19), NaCl  (Pu) = +0,02067 —0,19551  —0,04887
(l= 1, 2, 3) (53) —0,00175 —0,04887 —0,32120
mit d® [ —0,09072 +0,09490 —0,02559
NaBr (Ptr) = ¢2 ( +0,02122 —0,21297 —0,05456
Pii= (Ry1) 11 — (Ry2) 11+ 4 (Ry3) 125 0,00640 —0,05456 —0,32638
Pio=4(Ry7) 11— 4(Ryg) 11— 4 (Ryg) 12+ 8(Ry 15) 105 g [ —017718 4005064 —0,01954
KCl Pir) =—| +0,01266 —0,20658 +0,00289
P13=4'(R1 19) 11 _4'(Rl 20) 11_8(R1 20) 125 (Prr) = e? —0,00488 +0,00289 _0’21975)
Py = (R71) 11— (Ry2) 11 — (Ry) 12+ 2(R35) 153 g (017696 4005954  —0,03081
KBr Pr) = — +0,01488 —0,21017 +0,00769
P22 - (R77) 11— (R78) n+ (R79) 11— (R7 10) 11 (Pow)= e? —0,00770 +0,00769 —0,21615
+2(R7 11) 11 — 2(R7 12)11 — (R38) 12— 2(R7 16)12
—2(R ) +2(R ) —2(R ) . —0,16629 +0,06104 —0,05262
712713 715713 716/13> KJ (Psr) = +0,01526 —0,21958 +0,00119
Py3=2(R; 19) 11 — 2 (R7 50) 11 + 2(R7 21) 11 — 2(R7 29)11 =lpits Sy =R
—2(R7 20) 12— 2(R7 20) 13+ 2 (R7 99) 133 (55)

Pgi= (Ryg 1) 11— (Rig2) 11— 2(Ryg ) 123
Pgy=2(Ryg7)11—2(Rygs) 11+2(Rigg) 11
—2(Ry910)11—2(Ryg8) 12— 2(Ryg 16) 12
—2(Ryg18) 125
Pg3 = (Ryg 19) 11 — (Ryg 20) 11+ (Rig21) 11 — (Ryg 22) 11
+2(Ryg23) 11— (Rig24) 11— 2(Ryg 29) 12
—2(Ryg24)12-
Die Kehrmatrixelemente R fiir alle 26 Gitterpunkte,
die wir in die Rechnung aufnehmen, berechnen sich
aus (23) bis (26) mit (15). Unter anderem ist
(Ry1) 11 =203
(Ri2)11=23S1111(Re-2,0,0) 3
(Rig)12=22 8121 (R(-1, 21,09) -

(54)

§ 7. Iterative Losung

Gl. (44) lautet bei Summation tber die Gitter-
punkte 1 bis 26:

m “ﬂ 6e*{1+28(d+2)}exp{—28(d+2)}

—12e{1+28V2(d+y) exp{ -2 V2(d+y)}
+8e2{1+28V3(d+2)}exp{—-28V3(d+2)}.
(56)

Dabei sind die Auslenkungen in 1-Richtung der
néachsten Nachbarn, die durch Punkt (1) représen-
tiert werden, mit z, der iibernachsten, reprasentiert

durch Punkt (7), mit ¥y und der Nachbarn 3. Ord-
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nung (Punkt (19)) mit z bezeichnet. Die Gln. (50)
bis (52) und (56) bilden ein gekoppeltes nicht-
lineares Gleichungssystem fiir die Variablen =z, vy,
z und f, das nur iterativ zu losen ist. Die Zahl der
notwendigen Iterationsschritte fiir einen Ausgangs-
wert o =8-107 bei einer Genauigkeit

| Ba—n—pm)

B

Die Ergebnisse fiir die Variationsparameter und die
neuen Ruhelagen, die sehr stark von den f-Werten
abhidngen, sind fiir verschiedene effektive Massen
in Tab. 3 zusammengestellt. Positives Vorzeichen bei
den Daten fiir die Verschiebungen bedeutet eine
Gitteraufweitung. Abb. 2 gibt den funktionellen Zu-
sammenhang zwischen m.; und dem Variations-
parameter wieder.

<5-107* liegt zwischen 5 und 6.

o Auslenkungen in 9%, der
7 Variations- Gitterkonstanten
et parameter f
x Yy ¥4
LiF 1 6,10-107  +267 +030 —0,15
1.5 6.84-107  +356 +147 —0,04
2 733-107  +412 +215 +005
NaCl 1 6,32-107  —0,113 —042  + 0,06
1.5 716-107  —069 —010 -+ 0,00
2 772-107 —096 -+ 0,06 | — 0,02
NaBr 1 6,32-107 | —0,17 —046  + 0,02
1,5 717-107 —079 —0,112 | — 0,06
2 773-107 — 110 +0,05 — 0,09
KCl 1 6,36-107  — 0,59 — 051 | + 0,12
1.5 724-100  —153 —021 + 0,02
2 781-107  — 198 —008  + 0,01
KBr 1 6.36-107  —056 —052  +0,12
1.5 723-107 —151 —020 + 0,05
2 781-107  — 197 —006 | —0,04
KJ 1 6.35-107  — 0,50 — 0,54 -+ 0,09
1.5 723-107 —143 —021 —0,05
2 780-107 — 187 —006 —0,11
Tab. 3.

Nach unserem Modell sind die 6 néchsten Nach-
barn der Storstelle Kationen; die Dipolwirkung
sucht den Abstand zwischen F-Zentrum und Kation
zu vergroflern, die elastische Wirkung ihn zu ver-
kleinern. Zufolge unseres Ansatzes sind die Ab-
stoBungskrafte bei den nachsten Nachbarn grofler
als die Dipolkréafte; somit ist dort der Abstand der
Gleichgewichtslagen vom Storzentrum kleiner als
die Gitterkonstante. Der Dipolterm nimmt fiir hohere
B-Werte ab; dies bedeutet in Ubereinstimmung mit
unseren numerischen Ergebnissen eine Zunahme
der Teilchenkonzentration um das I-Zentrum. Die
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Abb. 2.

Anionen werden nach innen gezogen, jedoch umso
weniger, je grofler der Variationsparameter f ist.
Die Nachbarn 3. Ordnung erfahren durch das F-
Zentrum nur noch eine schwache Beeinflussung, so
daB} sie durch die unmittelbare Umgebung der Stor-
stelle teilweise sogar leicht nach innen ausweichen.
Damit durfte die von uns gemachte Vernachldssigung
weiterer Gitterteilchen in dem Gleichungssystem fiir
den Grundzustand des Storstellenelektrons als zu-
ldssig angesehen werden.

Lithiumfluorid verhélt sich nach unserer Berech-
nung gerade umgekehrt wie alle anderen Alkali-
halogenide vom NaCl-Gittertyp. Nun hat aber das
Lithiumion einen 2- bis 3-mal kleineren Radius als
die Halogenionen, wihrend alle anderen Alkali-
halogenide ein giinstigeres Verhéltnis in den Ionen-
radien aufweisen. Es bliebe daher zu untersuchen,
inwieweit unser Punktladungsmodell mit nur pau-
schaler Beriicksichtigung der Elektronenhiillenpolari-
sation und vor allem die Vernachlassigung der Ab-
stoBung bei iibernachsten Nachbarn im Falle des LiF
noch gerechtfertigt ist: eine Frage, die im Rahmen
dieser Arbeit nicht entschieden werden soll.

Ich danke Herrn Dr. F. WanL, der die Arbeit an-
regte und sie durch wertvolle Diskussionen forderte,
herzlich. Herrn Prof. Dr. F. Borpp spreche ich dafiir
meinen Dank aus, dal} ich die Arbeit an seinem Institut
ausfiihren durfte, desgleichen der Bayerischen Akade-
mie der Wissenschaften, auf deren GroBrechenanlage

TR 4 ich die umfangreichen numerischen Rechnungen
durchfiithren konnte.



