
worin 

NA=NA/(l+exp{(E2-eV-EF)J(kT)}) 

( A , 14) 

die Dichte der ionisierten Akzeptoren und NA die 
Dichte der gesamten Akzeptoren bedeutet. E2 ist die 
Energie des Grundzustandes der Akzeptoren. 

Unter der Voraussetzung E? — E2^> k T folgt 
Alle Akzeptoren sind negativ geladen 

(mit Elektronen besetzt) . Die Neutralitätsbedingung 
lautet dann statt ( A , 11 ) 

n0 = A V ( l + e ) - / V A . (A, 15) 

Das Entwicklungsglied erster Ordnung ist unter die-
ser Voraussetzung sehr klein gegenüber dem ent-
sprechenden Gliede von A p in Gl. ( A , 1 0 ) , so daß 
sich an ( A , 10) nichts ändert. Setzt man also die ge-
änderte Neutralitätsbedingung ( A , 15) in ( A , 10) 
ein, so f o lg t : 

7 H . BROOKS, Advan. Electron. 7, 87 [1955], vgl. S. 157 f. 

- n + N v - N A ( A , 16) 

Es 
ist daher statt ( A , 12 ) jetzt 

N = n0+(n0 + NA) (1 - (n 0 + JVA)/JVD) (A , 17) 

in die DEBYE—HücKEL-Länge Lp [Gl . ( A , 1 ) ] einzu-
führen. 

Für p-Leiter sind in ( A , 17 ) n0 durch p 0 zu er-
setzen und NA und A p zu vertauschen. 

Mit ( A , 12) bzw. ( A , 17 ) identische Gleichungen 
wurden bereits von BROOKS 7 und HERRING 8 benutzt 
im Zusammenhang mit Untersuchungen zum Pro-
blem der Streuung von Elektronen und Löchern an 
abgeschirmten geladenen Punktfehlstellen. 

Herrn M. J. GELEYNS vom Philips-Rekencentrum, 
Eindhoven (Holland), danke ich für die Ausführung 
der numerischen Rechnungen. 

8 C. HERRING, unveröffentlicht. 

Berechnung und Anwendung der Kehrmatrix der nichtlinearen Gitterstatik 
für Alkalihalogenide 

L O R E K E R N - B A U S C H 

Institut für Theoretische Physik der Universität München 

(Z. Naturforschg. 21 a, 798—806 [1966] ; eingegangen am 16. März 1966) 

Mit der Theorie der klassischen nichtlinearen Gitterstatik lassen sich bei Ionenkristallen 
beliebige Störkonfigurationen im Kristallgitter atomistisch beschreiben. Die Lösung der nicht-
linearen Gittergleichungen gelingt, wenn die Kehrmatrix für den linearen Anteil der Gitterglei-
chungen bekannt ist. Die Kehrmatrix wird für Ionenkristalle vom NaCl-Gittertyp aufgestellt und 
für die Alkalihalogenide LiF, NaCl, NaBr, KCl, KBr und KJ numerisch berechnet. Mit den Ergeb-
nissen wird ein quantenmechanisches F-Zentren-Modell für die verschiedenen Alkalihalogenide 
behandelt und das gekoppelte Gleichgewichtsproblem Gitterauslenkung —Elektronenkonfiguration 
gelöst. Die Berechnung der Gitterverschiebungen und des Variationsparameters der Wellenfunktion 
für den ls-Zustand erfolgt durch Iteration. 

V o m atomistischen Standpunkt aus stellt ein Kri-
stall ein kompliziertes System von Atomkernen und 
Elektronen dar. W i r wissen aber, daß in Ionen-
kristallen die Elektronen stark an die einzelnen 
Kerne gebunden s ind ; deshalb kann man dort in 
guter Näherung die Kristallelektronen kollektiv mit 
den Atomkernen des Gitters zu Ionen zusammen-
fassen, die in ihrer periodischen Anordnung die 
Kristallstruktur bestimmen. Lokalisieren wir die 
Gitterteilchen in ihren Gleichgewichtslagen und ver-
nachlässigen die oszillatorischen Bewegungen um 

die Ruhelagen, so haben wir als Model l für einen 
idealen Ionenkristall ein streng periodisches statisches 
Punktgitter. 

In der Natur finden wir stets nur Realkristalle 
vor , deren Symmetrie durch Störzentren verletzt ist. 
Für den Fall, daß diese Zentren auf einen sehr 
kleinen Bereich lokalisiert sind, gelingt es bei Ionen-
kristallen häufig, die physikalischen Eigenschaften 
der Störung durch quantenmechanische Model le zu 
beschreiben, die nur wenige Elektronen und Ionen 
umfassen. Das übrige Gitter darf als Punktgitter 
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klassisch behandelt werden, wozu sich die in den 
A r b e i t e n v o n FUES, STUMPF u n d WAHL 1 e n t w i c k e l t e 
klassische nichtlineare Gitterstatik eignet. 

Eine wesentliche Voraussetzung für die ato-
mistische Lösung der klassischen nichtlinearen Gitter-
gleichungen ist die Bi ldung einer Kehrmatrix für 
den linearen Anteil der Gittergleichungen. Sie ist 
eine gitterkonstante Größe des idealen Kristalls und 
nicht von speziellen Störkonfigurationen abhängig. 
Anknüpfend an eine Arbe i t v o n GROSS und WAHL 2 

bringen wir hier eine genauere Berechnung der 
Kehrmatrix für verschiedene Kristalle v o m NaCl-
Gittertyp. Dazu gehören insbesondere alle Alkali-
halogenide mit Ausnahme der Cs-Salze 3 . 

Mit den Ergebnissen behandeln wir anschließend 
das Gleichgewichtsproblem Gitterauslenkung — Elek-
tronenkonfiguration am F-Zentrum. Zur iterativen 
Berechnung der Gitterauslenkungen und des Para-
meters der Wel lenfunktion f ü r den ls-Zustand als 
Funktion der effektiven Massen benützen wir die 
v o n WAGNER 4 angegebene F-Zentrenfunktion. 

§ 1. Nichtlineare Gitter Statik 

W i r tragen hier nochmals die für die fo lgenden 
Rechnungen notwendigen Einzelheiten aus dem Ge-
biet der nichtlinearen Gitterstatik zusammen. Die 
Kristallbausteine seien in ihren idealen Gitterorten 
9t i durch die dre ikomponent igen Indizes t = (it, i2 , 
i 3 ) bzw. m = ( m j , m2 , m3) charakterisiert. Sie sollen 
diese Nummerierung auch dann noch beibehalten, 
wenn sie sich info lge statischer Fehlordnungen in 
den neuen Lagen 

ti = + fy (1) 
befinden. 

Die Struktur eines stabilen Kristalls ist durch ein 
M i n i m u m der potentiellen Wechselwirkungsenergie 
sämtlicher Kristallbausteine bestimmt, die Idealstruk-
tur durch das absolute Min imum. Da wir nur Zwei-
teilchenwechselwirkungen haben 5 , entstehen die 
Kräfte durch Superposit ion. Somit erhalten wir nach 
Variation der potentiellen Energie 

V i U i = - 0 t = 2 l > t m O } m - t ) i ) (2) 
m 

1 E . FUES U. H . S T U M P F , Z . Naturforschg. 1 0 a, 1055 [1955]. 
— E . FUES, H . S T U M P F U. F . W A H L , Z . Naturforschg. 1 3 a, 
962 [1958]. (Diese Arbeit soll im folgenden mit (I) be-
zeichnet werden.) — H . STUMPF, Quantentheorie der Ionen-
realkristalle, Springer-Verlag, Berlin 1961. 

2 H . GROSS U. F . W A H L , Z . Naturforschg. 1 4 a, 285 [1959]. 
(Wird im folgenden mit (II) bezeichnet.) 

7 9 9 

das System der Gittergleichungen 

f i = 2 > i m 0)m - t y ) ; ( 3 ) 
m 

fi sei eine „äußere " Kraf t , wie wir diejenigen Kräfte 
bezeichnen wollen, die nicht durch eine Wechsel-
wirkung mit regulären Gitterteilchen Zustandekom-
men. 

Unter der Atnnahme, daß die Abstandsänderung 
| tym — ty i | * die durch Verrückung zum idealen Gitter-
abstand hinzukommt, klein gegen die Gitterkonstante 
ist, kann jede Kraftkomponente auf der rechten 
Seite von ( 3 ) in eine TAYLOR-Reihe um d ie Ruhe-
lagen des idealen Gitters entwickelt werden, und wie 
in (I ) und ( I I ) ergibt sich 

2 4 m '[t)m - l ) i ] = ? i ' - ( 4 ) 
m 

Dabei wurde für die Tensorgrößen V <pim — 
die Bezeichnung A\m gesetzt; 

fi = f i - 2 f y m ( 5 ) 
m 

mit fjim als höhere nichtlineare Glieder der Kräfte 
im gestörten Gitter. 

Gemäß ( I I ) haben die Tensorkomponenten (Aim) 
folgendes Aussehen: 

( A \ _ / r2 x\m,k ^ i xim, ix\m,k \ „ 
y^mJik— I ^ 3 r "r r2 I * int 

(i,k=l, 2 , 3 ) ( 6 ) 

mit — = tim = (^im.l > x\m,2> ^im.s) und | rjm| 
= r. Das Potential P i m ist nur v o m Abstand ab-
hängig. 

Schreiben wir ( 4 ) um, so gilt (nach Umsum-
mat ion ) 6 

2 4 m - t ) m = f i . ( 7 ) 
m 

Eine formale Umkehrung führt auf die Gleichung 

i ) m = 2 * m t f i . (8) 
i 

Die Auslenkungen k o m m e n also durch Überlagerung 
derjenigen Wirkungen zustande, die durch die an 
den verschiedenen Punkten angreifenden Kräfte ent-
stehen. Dies gestattet eine Bestimmung der Reziprok-
matrix R = A~~x über die Einzelkraftlösungen. Setzen 

3 Handbuch d. Phys. VII/1, Springer-Verlag, Berlin 1956, 
S . 8 6 . 

4 M . W A G N E R , Z . Naturforschg. 15a, 8 8 9 [ 1 9 6 0 ] u. 16a, 
3 0 2 u . 4 1 0 [ 1 9 6 1 ] , 

5 Polarisationskräfte sind Vielteilchenwechselwirkungen, die 
aber in dieser Arbeit nur pauschal durch eine Abschirm-
konstante erfaßt werden sollen. 

6 S. Anm. 1, Arbeit I. 



wir nämlich eine normierte Einzelkraft am Punkt f 
in Richtung c an, so erhält man an der Stelle TTT 
in Richtung b die Verschiebung 

M C (9) 

Die Gesamtheit der kann man als Verschie-
bungsvektor in einem 3,/V-dimensionalen Raum auf-
fassen. Durch geeignete Transformation der Basis-
vektoren suchen wir für die Transformation der 
Komponenten 

= ( 1 0 ) 
CT 

die Matrix so festzulegen, daß die meisetn a0 un-
bedeutend klein werden. Aus der Kontinuumstheorie 
kennen wir die Lösung für eine Einzelkraft 7 . Es 
liegt daher nahe, die Transformat ion ( 1 0 ) als eine 
Reihenentwicklung in den a0 aufzufassen, die als 
wesentlichstes Glied unter den F^Sia die erwähnte 
elastische Lösung für eine Einzelkraft enthält. Die 
weiteren Glieder sind dann Korrekturfunktionen zur 
Verbesserung der Kontinuumslösung in den Be-
reichen, in denen die wirklichen Auslenkungen stark 
von den nach der Elastizitätstheorie berechneten 
Werten abweichen. 

Zur Durchführung dieses Programms definiert 
man die Matrizen F als diejenigen Werte, die aus 
den elastischen Lösungs- bzw. Korrekturfunktionen 
Söc|ö(9ifm) durch Einsetzen der idealen Gitterab-
stände 

d\m - = 9tfm (11) 
hervorgehen. 

Mit c als Richtung der Kraft und b als Richtung 
der Auslenkung sind die \a Tensoren zweiter 
Stufe; sie enthalten 9 Funktionen. W i r setzen also 

ÖC| CT m ) • (12) 

Die Transformationsmatrix S^cii m ) soll mit der 
elastischen Lösung, dem sog. System der Funda-
mentalintegrale 8 , identifiziert werden. Diese Funk-
tionen geben mit wachsender Entfernung vom An-
griffspunkt der Einzelkraft die Verschiebungen im 
diskreten Gitter immer genauer, während sie im 
Störzentrum eine Singularität besitzen und auch in 
der Umgebung des Kraftaufpunktes sehr große A b -
weichungen aufweisen. W i r werden daher im näch-
sten Paragraphen für Aufpunkt und Umgebung noch 
geeignete Definitionen treffen. 

7 E. KRÖNER, Kontinuumstheorie der Versetzungen und 
Eigenspannungen, Erg. angew. Math. 5, Springer-Verlag, 
Berlin 1958. 

Mit ( 4 ) erhalten wir ein endliches, in den 
lineares Gleichungssystem 

2 a, mb (Sbc\o (9tfm) ~ ) <*a * = <5if Sac . 
1 ,b,a 

Zur Korrektur der elastischen Lösung auf die ato-
mistische genügt es, aus dem hochdimensionalen 
Gleichungssystem ( 1 3 ) nur wenige Gleichungen zu 
berücksichtigen, da die restlichen das Ergebnis 
praktisch nicht beeinflussen. 

§ 2. Die Tensoren St,c (i und A jm 

Als Lösung der elastischen Differentialgleichungen 
ergeben sich jeweils 3 Verschiebungsvektoren für 
eine Einzelkraft am Punkt f = ( / x , f2 , / 3 ) in x-, y-
oder z-Richtung, die wir in dem symmetrischen 
Tensor ( 1 2 ) zusammenfassen, der dann mit | 9ifm | 
= r = d | lit — f | fo lgende Gestalt annimmt: 

Sftcl l - 75 ( $ * ) • (14) 

Dabei ist 

Sa = a(mi — fi)i + b([mk - / , ) 4 + ( m , - / ? ) 4 ) 

+ c((mi-fi)2 (mk -fk)2 + (nii — /,•)2(m; — fi)2) 

+ d(mk-fk)2(ml — fi)2; ( 1 5 ) 

Sik = e({mi-ji)3 (mk- jk) + (m*-/;) (mk-fk)3) 

+ f{mi-fi){mk- fk) (mi-fi)2; 

i,k,l= 1 , 2 , 3 ; i =t= &=|= l #= i ( i , k, l stets voneinan-
der verschieden) ; 

a — 3 (6 c 4 4 + c n 2 — c 1 2 2 — 2 c 1 2 c 4 4 ) ; 

6 = 1 2 ( c 4 4 2 + c n c 4 4 ) ; 

c = 3 (4 c 4 4 2 + c u 2 - c 1 2 2 + 10 c n c 4 4 - 2 c 1 2 C44); 

d = 3 ( 8 c 4 4 2 + 2 c4 4 cn — 6 c12 c 4 4 + 3 c n 2 — 3 c 1 2 2 ) ; 

e = 3 (2 c44~ + Cj2 c4 4 + c 4 4 CJJ + cu c±2 — c 1 2 2 ) ; 

/ = 6 ( 4 c 4 4 2 + 5 c 1 2 c 4 4 - c 4 4 cn - cn c12 + c122). 

Die Cur sind die VoiGTschen elastischen Konstanten. 

Wir verwenden die gleichen Ersatzpotentiale wie 
in ( I I ) . Bezeichnet ocM die sog. MADELUNGsche Kon -
stante 9 , die den jeweiligen Gittertyp berücksichtigt, 
d den kürzesten Ionenabstand, e die Elementarladung 
und rj den Abstoßungsexponenten, so lautet für die 
6 nächsten Nachbarn in' des betrachteten Aufpunk-

8 E. KRÖNER, Diplomarbeit, T.H.Stuttgart; — (II). 
9 MADELUNG, Phys. Z . 1 9 1 8 , 5 2 4 [ 1 9 1 8 ] . 



tes i die Wechselwirkungsenergie 

+ ( 1 6 ) 

im übrigen Gitterbereich ( t t t^Nm') 

Pim (| SRtal) = ± (s. A n m . « ) . ( 1 7 ) 

Für alle Punkte nt + tll' erhalten wir mit ( 6 ) die 
Kugelflächenfunktionen 2. Ordnung 

(18) 

mit 

AUu = 2 (mu — iu) 2 — (mv — iv)2 — (mw — iw)2', 

Auv = 3 (m u — iu) (mv — ; 

u,v,w= 1 , 2 , 3 ; u 4= v 4= m>4= a . 

Für m ' - i = ( ± 1 , 0 , 0 ) ; (0 , ± 1 , 0 ) ; ( 0 , 0 , ± 1 ) 
addiert sich zu ( 1 8 ) der Tensor 

(19) 

mit 
,, »7 + 1 / ' • \2 

^uu — g aM lmu - lu) 

— ^r- ((,m'v - iv)2 + [m'w— iw) ; 

A'uv = 0 ; u, v, w = 1, 2, 3 ; u =4= v u;4= " • 

In guter Näherung kann man die Elektronenhüllen-
polarisation dadurch berücksichtigen, daß man den 
CouLOMB-Anteil ( 1 8 ) mit einem Absch i rmfaktor 1 1 

r = 1 / ( 1 + 7) (20) 

multipliziert. Man erhält somit : 

A = Acbr + AAb. ( 2 1 ) 

§ 3. Die Normierungskonstanten aa 

Zur numerischen Bestimmung der Kehrmatrix 
wählen wir eine Einzelkraft, die am Gitterpunkt 
[ = 0 = ( 0 , 0 , 0 ) in Richtung c = l angreift. Allen 
Funktionen S^cio ordnen wir im Ursprung den Wert 
Null zu, mit Ausnahme der Größe S^c i o ? für die wir 

SfeclO^fm) = ^mf^6c (22) 

definieren. 
Entsprechend dieser Festlegung folgt nach ( 1 0 ) 

und ( 2 2 ) für die Auslenkungskomponenten des An-
griffspunktes in den Richtungen b = 1, 2, 3 : 

10 „ + " für Anionen. 
1 1 H . RAMPACHER, Z . Naturforschg. 17a, 1 0 5 6 [ 1 9 6 2 ] ; - ( I I ) . 

yob = yW = a0 <5of dbl. ( 2 3 ) 

Diese Definition und die folgenden Korrekturen der 
elastischen Lösung in der Umgebung des Null-
punktes sollen in A b b . 1, dem Modell eines Kristalls 
mit NaCl-Gitter, veranschaulicht werden. 

U m eine möglichst genaue Beschreibung unseres 
NaCl-Gittertyps mit Hil fe der Fundamentalintegrale 
zu erreichen, betrachten wir an Stelle eines singu-
lären Punktes ein „Singularitätsgebiet" , in das wir 
die 6 nächsten Nachbarn des Kraftzentrums mitein-
beziehen. Für diese 6 Ionen brauchen wir im NaCl-
Gitter nur die Auslenkungskomponenten in Richtung 
6 = 1 anzugeben, die Komponenten in den anderen 
Raumrichtungen verschwinden, da sich die entspre-
chenden Reaktionskräfte aus Symmetriegründen 
gegenseitig wegheben: 

V ( ± i , 0,0)6= «I<*M» ^ ^ 

2/(0, ±1.,0)6= 2/(0,0. ± 1 ) 6 = ßl • 

W i r wollen voraussetzen, daß das Verhältnis der 
Auslenkungskomponenten für die übernächsten Nach-
barn durch die Fundamentalintegrale richtig wieder-
gegeben wird und diese Gitterteilchen von den 
weiter außen liegenden nur durch eine andere Nor-
mierungskonstante unterschieden werden müssen: 

Ä = a 2 S 6 i | i ( ^ m " ) ( 2 5 ) 
mit 

m"=(±l, ±1,0); (±1,0, ±1); (0, ±1, ± 1). 

Für das übrige Gitter, d. h. für alle Punkte m =Hn\ 
ITt", begnügen wir uns mit dem Fundamentalintegral 
und verzichten auf weitere Korrekturfunktionen in 
der Annahme, daß in diesem Bereich keine allzu-
großen Abweichungen mehr vorl iegen: 

2/(m6} = « a S 6 i | i O U . (26) 

Mit diesen 5 Funktionensystemen stellen wir jetzt 
die Reziprokmatrix auf. 

Als Ausgangspunkt für die numerische Berech-
nung der Normierungskonstanten a0 dient das System 
der 3 N Gleichungen ( 1 3 ) . Zur Bestimmung unserer 
5 verschiedenen a0 benötigen wir nur 5 linear unab-
hängige Gleichungen und greifen dazu diejenigen 
für die Aufpunkte 

t = ( 0 , 0 , 0 ) ; ( 1 , 0 , 0 ) ; ( 2 , 0 , 0 ) ; ( 0 , 1 , 0 ) ; 

( 0 , 1 , 1 ) ( 2 7 ) 

mit a = 1 heraus. W i r wollen die betreffenden Glei-
chungen in dieser Reihenfolge mit I — V durchnu-



belassen wird, also f x = / 2 = / 3 = 0. A [ , B [ , C, und D ; 
lassen sich nach kurzen Rechnungen anschreiben; auf 
umfangreiche Summafionen führt dagegen die Be-
rechnung v o n E i , die aus Termen der Art 

lAia,mbSbl]1(dim) ( 2 9 ) 
m, b 

bestehen. Die Berechnung erfolgte mit einer elektro-
nischen Rechenmaschine, und die Gittersummation 
wurde über 5 0 Gitterabstände ausgeführt. Die Sum-
mation über einen noch größeren Bereich ergibt 
praktisch keinen Beitrag mehr. 

Für die Koeffizienten von ( 2 8 ) erhalten wir fo lgende Ausdrücke : 

4 « m ( I 7 - 1 ) ; W > 7 + 1) - 4 T ; C i = — f a M + 4 - T ; 

Di = 0 ,25 r(a-b + c-d + 6 e) ; £ i = T ( 0 , 0 6 3 3 2 (a - b) - 0 , 0 2 6 3 6 (c - d) - 0 , 4 6 1 0 0 e - 0 , 1 5 1 4 1 / ) ; 

All=%au(r) + l ) - 2 r ; Bu = - * a M ( ^ - 1) + 0 , 2 5 T ; _ C „ = 0 , 7 0 7 1 1 T ; 

Z)„ = 0 , 7 0 7 1 1 ( ( - K M + 0 , 8 7 4 7 8 T ) (a + 6 + c) - 0 , 2 1 4 6 6 T e ) ; 

£ n = (tV <*m0? + 1 ) - 0 , 8 6 7 6 6 2 F) a +T(- 0 , 1 4 9 8 5 b - 0 , 1 0 0 0 6 c - 0 , 0 6 9 4 1 d + 0 , 2 7 2 7 0 ~e); 

Am = 0,25r; Bm=iau(r]+l) - 2 , 0 7 4 0 7 T ; C m = - 0 , 5 0 0 8 8 T ; 

Z ) m = 0 , 7 0 7 1 1 T ( 0 , 2 3 0 5 4 a + 0 , 3 6 6 6 2 b + 0 , 2 3 0 5 4 c + 0 , 0 6 8 0 4 d - 1 , 0 0 3 7 4 e ) ; 

Em = ft aM ( 0 , 2 8 2 7 0 - rf) + 0 , 3 9 1 9 9 T) a + ( - £ a M 0 , 0 7 1 5 5 + 0 , 0 2 8 0 5 T ) 

+ ( - i a M 0 , 2 8 6 2 2 + 0 , 1 5 5 3 6 T ) c + T ( - 0 , 0 2 8 6 7 <f+ 0 ,27536 e + 0 , 0 6 8 5 8 / ) ; 

^ i v = - K M + ^ ; ß I V = 0 , 3 5 3 5 5 T ; C i v = - K m ( r j - 1 ) - 0 , 8 3 2 1 I T ; ( 3 0 ) 

D i v = 0 , 3 5 3 5 5 { [ K M ( ? ? + 1) - 1 , 96422 T ] (a + c ) + [ K M 0 ? - 1 ) + 0 , 2 1 4 6 6 T ] 6 
+ [ - K M + 1 , 0 8 9 4 4 T ] d - 0 , 9 8 4 4 6 T e } ; 

£ I V = 0 , 0 2 3 3 3 r a + ( - a M + 0 , 4 3 5 8 7 T ) 6 + T ( 0 , 0 9 2 7 4 c - 0 , 0 1 6 5 1 d + 0 , 4 0 8 5 2 e + 0 , 1 0 4 1 2 / ) ; 

Av= - 0 , 3 5 3 5 5 r ; By = 0 ; C v = - K m + 2 , 1 7 8 8 9 T ; 

Z) v = 0 , 3 5 3 5 5 ( 0 , 2 8 5 5 1 T ( a + c ) + [ - K M 0 ? - 1 ) - 0 , 0 0 8 6 8 T ] 6 

+ [ - K m ( ^ - I ) - 0 , 1 4 7 1 0 T ] d + 0 , 2 7 2 1 7 e } ; 

£ v = [KM ( «? + ! ) 0 , 1 2 8 3 - 0 , 2 1 3 9 8 T ] O + { K M ( ( ^ + 1 ) 0 , 1 2 8 3 - 0 , 3 0 4 1 1 ) - 0 , 1 7 3 5 5 T } b 

+ ( K M (»7 + 1 ) 0 , 1 2 8 3 - 0 , 4 3 7 1 7 T ) c + f t a M [ ( i ? + l ) 0 , 1 2 8 3 - 0 , 1 4 3 1 1 ] - 0 , 0 9 3 8 3 T } J 
+ r ( 0 , 0 1 5 5 4 e + 0 , 0 0 7 1 0 / ) . 

spiel br ingen wir hier die quantenmechanische Be-
schreibung v o n F-Zentren in Alkalihalogeniden, für 
die die Auslenkung der Ionen und die Gestalt der 
Elektronenwellenfunktionen in Abhängigkeit von 
den Gleichgewichtslagen der Gitterbausteine ange-
geben werden soll. W i r führen die Berechnung auf 
der Grundlage einer Theor ie durch, wie sie von 
STUMPF und Mitarbeitern 13 entwickelt wurde. 

Betrachtet wird ein Kristallvolumen mit einem 
einzigen F-Zentrum. Nach WAGNER 13 dient uns als 

merieren und schreiben: 

Ai oi0 + Bi at + Ci ßt + Di a2 + E-t a3 = <3io ~ 

( I = I , . . . , V ) . ( 2 8 ) 

§ 4. Numerische Berechnung der Koeffizienten 

Zur praktischen Auswertung der Koeffizienten von 
( 2 8 ) benützen wir unter Beachtung der Elektronen-
hüllenpolarisation die Tensoren ( 1 4 ) und ( 2 1 ) , 
wobe i der Angrif fspunkt der Kraft stets im Ursprung 

W i r lösen ( 2 8 ) für Alkalihalogenide unter Ver-
wendung der Daten in Tab. 1. Für den NaCl-Gitter-
typ ist die MADELUNG-Konstante ocj[, bezogen auf 
den kürzesten Ionenabstand, gleich 1 , 7 4 7 5 6 5 12 . 
Das Ergebnis ist in Tab . 2. angegeben. 

§ 5. Bestimmungsgleichungen für den Grundzustand 
beim F-Zentrum 

Nachdem die Reziprokmatrix vorliegt, können wir 
die Gleichungen für Gitterstörungen lösen. Als Bei-

1 2 LANDOLT-BÖRNSTEIN 1/4, Springer-Verlag, Berlin 1955, S. 
537. 

13 H. STUMPF, Quantentheorie der Ionenrealkristalle, Springer-
Verlag. Berlin 1961; — s. a. Anm.4. 



CßV • 10 11 , rÄi2* „,3* r-4* 
dyncm-2i* a laJ / 1 ^2* 

LiF 
cn = 11,77 
Ci2= 4,33 
C44 = 6,28 

2,010 0,696 0,5895 7 

NaCl 
cn = 4,68 
c i2= 1,23 
C44 = 1,19 

2,814 0,902 0,5257 8 

NaBr5* 
cn = 3,87 
C12 = 0,97 
C44 = 0,97 

2,981 1,044 0,4893 8 

KCl 
cn = 4,095 
C l 2 = 0,705 
C44 = 0,630 

3,14 0,820 0,5495 9 

KBr 
c u = 3,46 
C12 = 0,58 
C44 = 0,505 

3,293 0,922 0,5203 9 

KJ 
cn = 2,67 
Ci2= 0,43 
C44 = 0,42 

3,526 1,087 0,4792 9 

Anm.: 1* Handbuch d. Phys. VII/1, Springer-Verlag, Berlin 1956, S. 197. 
— 2* BORN-HUANG, Dynamical Theory of Crystal Lattices, Clarendon Press, 
Oxford 1954, S. 26. — 3* H. RAMPACHER, Z. Naturforschg. 17 a, 1056 
[1962]; W. SHOCKLEY, Phys. Rev. 70, 105(A) [1946]. — 4* Siehe § 2, 
(20). — 5* H. B. HUNTINGTON, Solid State Physics 7, 276 [1958]. 

Tab. 1. 

Ausgangspunkt die von der ScHRÖDiNGER-Gleichung 
des Gesamtsystems separierte ScHRÖDiNGER-Gleichung 
des lokalisierten Störstellenelektrons. A n die Stelle 
der Elektronenmasse tritt d ie effektive Masse m e f f , 
die die Wechselwirkung mit dem periodischen Gitter 
berücksichtigt: 

h2 

— Ae + VF yn{re,rm) =Un{rm) y „ ( r e , r m ) / meff 

( 3 1 ) 

Die Kernfreiheitsgrade sind in r m zusammengefaßt, 
t e bezeichnet die Freiheitsgrade und n den Zustand 
des Störstellenelektrons. VF ist identisch mit dem 
Eigenwert der Gitterelektronengleichung, dessen Be-

st immung äußerst kompliziert ist; davon sehen wir 
ab und beschreiben Vp durch die potentielle Energie 
des gestörten Gitters mit Hil fe von Ersatzpotentialen. 
W i r setzen — unter Vernachlässigung einer COULOMB-
Abschirmung 14 — 

vF=P( x m ) - Z ( e ^ + b 
m f o rm 

ee Cm 
m f o | Tm—Ve | 

( 3 2 ) 

P(X m ) ist die Wechselwirkungsenergie des defor-
mierten Gitters unter Beachtung der Elektronen-
hüllenpolarisation. Der 2. Term beschreibt das Poten-
tial einer Anionenlücke im Ursprung, zu dem wir 
noch den Ausdrude für die Elektron-Gitterion-Wech-
selwirkung hinzufügen. 

Zur Bestimmung der Wellenfunktion des Stör-
stellenelektrons verwenden wir das Variationsver-
fahren der Quantenmechanik 15 . W i r benützen nor-
mierte Vergleichsfunktionen v o m Wasserstofftyp 

( 3 3 ) 

deren Variationsparameter ß ^ noch von den Gleich-
gewichtslagen der Gitterbausteine und ihrem Gitter-
schwingungszustand l abhängen. 

Die Elektronenenergie erhalten wir, indem wir 
den Energieerwartungswert von ( 3 1 ) b i lden ; Un 

wird jetzt eine Funktion der Variationsparameter 
und der Kernlagen. 

Äquivalent mit der Lösung der SCHRÖDINGER-
Gleichung ist die Forderung, daß die Energie Un in 
bezug auf die gewählte Wellenfunktion und die 
Kernlagen minimal werden sol l : 

3 

und 

?(„, U n ( r m , A ( n ) (r m ) ) = 0 (Z = 1, 2 , . . . ) ( 3 4 ) 

V i t U r m , A ( M ) ) = 0 . ( 3 5 ) 

Ersetzt man VF durch den Ausdrude ( 3 2 ) , so erhält 
man nach Ausführung der Integration für die Gin. 

<*o ai ßi <X2 A 3 

LiF 
NaCl 
NaBr 
KCl 
KBr 
KJ 

-1 ,42797 
-0 ,89411 
- 0,97064 
-0 ,62622 
-0 ,66010 
-0,74629 

-1 ,06631 
-0 ,64100 
— 0,71335 
-0 ,42628 
-0 ,45911 
-0 ,53974 

-0 ,96018 
-0 ,47617 
-0 ,53148 
-0 ,27109 
- 0,28935 
-0,35017 

-0 ,93039 • lO-3 

-0 ,55573 • lO-2 

— 0,91986 • lO"2 

— 0,56065 • lO-2 

-0 ,87233 • lO-2 

-1 ,71353 - lO-2 

— 0,99667 • lO"3 

-0 ,59877 • lO"2 

-0 ,98716 • lO"2 

-0 ,65100 • lO-2 

-1 ,01220 • lO-2 

— 1,94768 • lO-2 

Alle Werte sind in d3 • e~2 • cm dyn - 1 angegeben. 

Tab. 2. 

14 Die CouLOMB-Abschirmung ist bei der stark lokalisierten 15 H. RAMPACHER, Z. Naturforschg. 1 8 a , 777 [1963]; — s. a. 
ls-Funktion sicher nur in geringem Maße ausgebildet. Anm.13. 



( 3 4 ) und ( 3 5 ) : 

~dß¥(T(ß^)+Q( xm,ß^)) = 0 

bzw. 

- V i P ( r m ) = V i ( < ? ( r m , Ä ( n ) ) - | 

= - 9 i = U 

h j ip* Axp dr 

und 

b 
r,nh ( 3 7 ) 

mit T ( ß ^ ) = - 2 meff 

und ( 3 8 ) 

f , ist die Störkraft auf das Gitterion am Ort Ij . Man 
kann zeigen, daß unter der Annahme kleiner Aus-
lenkungen die durch ein im F-Zentrum gebundenes 
Elektron entstehenden Gitterstörungen 

t j B - Z Ä n r f - f i ( 3 9 ) 
i =t=o 

hervorgerufen werden durch Kräfte f j von der 
F o r m : 

f. _ Dip jel _j_ AbJ(O) + A b ^ . ^ > ( 4 0 ) 

Die f j resultieren aus einem Dipolterm der Elektron-
Gitter-Wechselwirkung und einem kompensierenden 
Abstoßungsgl ied. Bei der Beschreibung der Absto-
ßung beschränken wir uns auf einen konstanten und 
einen linearen Anteil . 

Für den Grundzustand des F-Zentrums setzen wir 
nach WAGNER d ie Wasserstolfvergleichsfunktion 

y j u = ( ß w y * e x p { - ß W | ,o |} ( 4 1 ) 

an. Da wir nur den ls-Zustand behandeln wollen 
und uns außerdem beim F-Zentrum mit einem ein-
zigen Variationsparameter begnügen, definieren wir 
ß :=^ls). 

U m die Bestimmungsgleichungen ( 3 6 ) und ( 3 7 ) 
anschreiben zu können, benötigen wir die Energie-
erwartungswerte T(ß) und Q(xm,ß) ( 3 8 ) . Es ist 

1 3 / . 3\ , ( 4 2 ) ^ - U i s d r = - ß 2 

( 3 6 ) und ( 3 7 ) lauten dann: 

h2 

mefV m=t=o 

und 

ß+ Z emee(l + 2ß\xm\) e x p { - 2 / ? | r m | } = 0 
( 4 4 ) 

\m4=0 \ 
emee 

M trn r 

(l+ß\xm\)exp{-2ß\x* ( 4 5 ) 

§ 6. Die Kraftgleichungen und die Koeffizienten 
der reziproken Gittergleichungen 

Beim F-Zentrum setzen wir näherungsweise einen 
Einfluß der Störkräfte bis zu den Nachbarn 3. Ord-
nung voraus, d. h. wir betrachten die Gleichungen 
der 2 6 Teilchen des Kubus mit der Kantenlänge 2d , 
in dessen Mitte das Störzentrum lokalisiert ist. Da 
es sich um ein vo l lkommen kugelsymmetrisches 
Prob lem handelt, genügt es, jeweils die Auslenkungs-
komponenten in Richtung 1 der Teilchen mit der 
N u m m e r 1, 7 und 19 (s. A b b . 1) zu berechnen. 

24 / 

22 
(-1ÜÜT 

(-I-1.D i ff-iv 

j ' LrtäS" 

(1.1.1) 

i _ _ 06<\\ l äQ 

w ! (P'-io) i Tpfio) 

2 0 J-K0.-1) 
( - 1 . - 1 . - 1 ) 

OAnionen 

(0.-1.-1) 
.(0.0.-1) 21 

b-3 
4 6 - 2 

c-1 L> 
b-1 

(1-1-1) 

• Kationen 

Abb. 1. 

W i r entwickeln f , ( 4 0 ) : f { = f { 0 ) + Aio • [t)0 - fy] 

und erhalten dann für die z -Komponente der Kraft auf das Teilchen i = ( 1 ) = (1 , 0, 0 ) : 

Für die Teilchen ( 7 ) = ( 1 , 1 , 0 ) und ( 1 9 ) = ( 1 , 1 , 1 ) ergibt sich: 

^ ( 7 ) i = k ( 7 ) — [ Mo( - i , - i ,oO n + -i ,o)) 12] ' y ( 7 ) i 

Ä ( 1 9 ) 1 = A ; ( 1 9 ) 1 ( ® ) - [ M o c - i . - i , - i ) ) n + (Ao(.t, _ l f _ d ) i 2 + M o ( - i , -1, - i ) ) i 3 ] •y(l9)l 

( 4 6 ) 

( 4 7 ) 

( 4 8 ) 

( 4 9 ) 



Der symmetrische Tensor Aom beredinet sich mit ( 4 5 ) analog § 2 . ( 4 7 ) , ( 4 8 ) und ( 4 9 ) lauten dann: 

*(l)i = ^ [ ^ - ( l + 2ßd + 2ß2d2)exp{-2ßd}]+y(l)l ft «lifo-+ 1) - 2 (1 + 2 ß d 

*(7)!= ^ ü + V2ßd + 2ß2d2) exp{-2ßdV2} 

d3 

+ 2 ß2 d? +2 ß3 < / 3 )exp{ — 2ßd}]; ( 5 0 ) 

H19)!= - |/3 d2 

. + y(Vi 5 (W2 + 2ßd + 2 V2 ß2 d2 + 4, ß3 d3) exp{-2 ß dV2}; ( 5 1 ) 

$ + %V3ßd + 2ß2d2) e x p { — 2ßd j / 3 } 

- y ( 1 9 ) 1 £ (IVB + iß d + f Vsß2 d2 + 4/J» </ 3 )exp{ -2ßdV3}. ( 5 2 ) 

Nachdem wir die auf die Gitterbausteine wirkende 
Kraft kennen, benötigen wir , um die Auslenkungen 
zu berechnen, in unserer reziproken Gittergleichung 
(39) noch die Elemente der Kehrmatrix. 

Für die Auslenkungen der Teilchen JTl mit der 
Nummer 1, 7 und 19 ergeben sich unter Beachtung 
der Symmetrieverhältnisse im Gitter fo lgende durch 
die notwendigen Summationen über die RMi entste-
henden Gleichungen: 

y(m)t = Pnk(l)1 + Pt2k(7)1 + Ptsk(19)l 

( l = 1 , 2 , 3 ) (53) 
mit 

•^11= ( ^ n ) i i - (^12)11 + 4(J? 1 3 ) 1 2 ; 

P12 = 4 (Ä 1 7 ) u - 4 (Ä1 8) n - 4 (Ä1 8) 12 + 8(7?! 15) 1 2 ; 

P 13 = 4 (R 1 19) u - 4 ( R t 2 0 ) 1 1 - 8 ( ^ 1 20)12; 

P2i= (RH) 11 - ( # 7 2 ) 1 1 - ( ^ 7 4 ) 1 2 + 2 ( ^ - 5 ) 1 3 ; 

P 2 2 = (/?77) n — (/?78) 11 + (R-q) 11 — {R-; 10) 11 
+ 2 (R-! Ii) 11 - 2 ( ^ 7 12)ll ~ (#78) 12 - 2 ( R 7 i6)l2 
— 2 (R7 12) 13 + 2 (R7 1 5) 13 — 2 (R7 16) 13; 

P2S = 2 (R7 1 9) n — 2 (/?7 2 0) n + 2(R 7 2 1 )n — 2(/?7 2 2 ) n 

— 2 (/?7 2 0) 1 2 — 2 (R7 2 0) 13 + 2 (R7 22) 13; 

P 3 1 = (^19 1) 11 ~ (-^19 2) 11 — 2 (/?19 4) i 2 ; 

P32 = 2 (Rj.9 7) 11 — 2 (R1 9 g) 11 + 2 {Rw 9) 11 
— 2 (R19 I0) n — 2 (/?19 8) 12 — 2 (R1916) I2 

— 2 (#19 i 8) 12; 

P 3 3 = ( # 1 9 1 9 ) 11 — ( # 1 9 20) 11 + ( # 1 9 21) 11 — ( # 1 9 22) 11 
+ 2 (#19 23) 11 ~ (#19 24) 1 1 ^ 2 {R19 20) 12 
— 2 (/?19 2 4) 12 . 

Die Kehrmatrixelemente R für alle 26 Gitterpunkte, 
die wir in die Rechnung aufnehmen, berechnen sich 
aus (23) bis (26) mit ( 1 5 ) . Unter anderem ist 

( # n ) i i = a o; 

(#12)11 = a3 1 i ( ^ ( - 2 , o , o ) ) ; (54) 

(^13) 12 = a2 ^12 11 1, +1,0)) • 

Es ist ohne weiteres einsichtig, wie die übrigen 
(#mi) ab gebildet werden. 

Für die P tk ergeben sich bei den Alkalihalogeni-
den LiF, NaCl, NaBr, KCl , KBr und KJ fo lgende 
numerischen Werte : 

LiF (Ptk) = 

NaCl (Ptk) = 

NaBr (Ptk) 

m ( +0,17045 
, +0,12569 

e \+0,01215 

d3 ( -0,07874 
— +0,02067 
e" \-0 ,00175 

d3 / -0,09072 
( +0.02122 

0,00640 

KCl (Ptk) = 

KBr (Ptk) = 

-0,17718 
+ 0,01266 
-0,00488 

d3 / -0,17696 
( +0.01488 

0,00770 

KJ (Ptk) = 
m [ -0,16629 
, +0,01526 

e" \-0,01315 

+ 0,50277 
-0,17934 
-0,21010 

+ 0,08269 
-0,19551 
-0,04887 

+ 0,09490 
-0,21297 
-0,05456 

+ 0,05064 
-0,20658 
+ 0,00289 

+ 0,05954 
-0,21017 
+ 0,00769 

+ 0.06104 
-0,21958 
+ 0.00119 

+ 0,04860\ 
-0,21010 
-0 ,65828/ 

— 0,00701\ 
-0,04887 
-0,32120/ 

— 0,02559\ 
-0.05456 
-0,32638/ 

— 0,01954\ 
+ 0,00289 
-0,21975/ 

— 0,03081\ 
+ 0,00769 
-0 ,21615/ 

— 0,05262\ 
+ 0,00119 
-0,22484/ 

( 5 5 ) 

§ 7. Iterative Lösung 

Gl. ( 4 4 ) lautet bei Summation über die Gitter-
punkte 1 bis 2 6 : 

*J = 6e2{l + 2ß(d + x)}exp{-2ß(d + x)} 

-12e2{l + 2ß V2 (d + y)} e x p { -2ßV~2(d + y)} 

+ 8e2{l+2ßV3(d + z)}exp{-2ßV3(d + z)} . 

( 5 6 ) 

Dabei sind die Auslenkungen in 1-Richtung der 
nächsten Nachbarn, die durch Punkt ( 1 ) repräsen-
tiert werden, mit x, der übernächsten, repräsentiert 
durch Punkt ( 7 ) , mit y und der Nachbarn 3. Ord-



nung (Punkt ( 1 9 ) ) mit 2 bezeichnet. Die Gin. ( 5 0 ) 
bis ( 5 2 ) und ( 5 6 ) bilden ein gekoppeltes nicht-
lineares Gleichungssystem für die Variablen x, y, 
z und ß, das nur iterativ zu lösen ist. Die Zahl der 
notwendigen Iterationsschritte für einen Ausgangs-
wert ß0 = 8-10' bei einer Genauigkeit 
j ß(n — \) —ß(ri) 

< 5 ' 1 0 4 liegt zwischen 5 und 6. 

Die Ergebnisse für die Variationsparameter und die 
neuen Ruhelagen, die sehr stark von den ß-Werten 
abhängen, sind für verschiedene effektive Massen 
in Tab . 3 zusammengestellt. Positives Vorzeichen bei 
den Daten für die Verschiebungen bedeutet eine 
Gitteraufweitung. A b b . 2 gibt den funktionellen Zu-
sammenhang zwischen m^f und dem Variations-
parameter wieder. 

Weff Variations-
parameter ß 

Auslenkungen in % der 
G itterkonstanten 

x y z 

LiF 1 G.10 107 + 2,67 + 0,30 - 0,15 
1,5 6.84 107 + 3.56 + 1.47 - 0 , 0 4 
2 7,33 107 + 4,12 + 2,15 + 0,05 

NaCl 1 6,32 107 - 0,13 - 0,42 + 0,06 
1.5 7,16 107 - 0 . 6 9 - 0,10 + 0,00 
2 7,72 107 - 0 . 9 6 + 0,06 - 0,02 

NaBr 1 6,32 107 - 0 , 1 7 - 0,46 + 0.02 
1,5 7,17 107 - 0 , 7 9 - 0 , 1 2 - 0 , 0 6 
2 7,73 107 - 1.10 + 0,05 - 0 , 0 9 

KCl 1 6.36 107 - 0 , 5 9 - 0.51 + 0,12 
1,5 7.24 107 - 1,53 - 0,21 + 0,02 
2 7,81 107 - 1.98 - 0,08 + 0,01 

KBr 1 6,36 107 - 0,56 - 0,52 + 0,12 
1,5 7,23 107 - 1.51 - 0,20 + 0,05 
2 7,81 107 - 1,97 - 0.06 - 0 , 0 4 

KJ 1 6.35 107 - 0,50 - 0,54 + 0,09 
1,5 7.23 107 - 1.43 - 0,21 - 0 , 0 5 
2 7,80 107 - 1.87 - 0.06 - 0,11 

Tab. 3. 

Nach unserem Model l sind die 6 nächsten Nach-
barn der Störstelle Kat ionen; die Dipolwirkung 
sucht den Abstand zwischen F-Zentrum und Kation 
zu vergrößern, die elastische Wirkung ihn zu ver-
kleinern. Zufo lge unseres Ansatzes sind die Ab -
stoßungskräfte bei den nächsten Nachbarn größer 
als die Dipolkräfte ; somit ist dort der Abstand der 
Gleichgewichtslagen v o m Störzentrum kleiner als 
die Gitterkonstante. Der Dipolterm nimmt für höhere 
ß-Werte a b ; dies bedeutet in Übereinstimmung mit 
unseren numerischen Ergebnissen eine Zunahme 
der Teilchenkonzentration um das F-Zentrum. Die 
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1.6 2.0 

Anionen werden nach innen gezogen, jedoch umso 
weniger, j e größer der Variationsparameter ß ist. 
Die Nachbarn 3. Ordnung erfahren durch das F-
Zentrum nur noch eine schwache Beeinflussung, so 
daß sie durch die unmittelbare Umgebung der Stör-
stelle teilweise sogar leicht nach innen ausweichen. 
Damit dürfte die von uns gemachte Vernachlässigung 
weiterer Gitterteilchen in dem Gleichungssystem für 
den Grundzustand des Störstellenelektrons als zu-
lässig angesehen werden. 

Lithiumfluorid verhält sich nach unserer Berech-
nung gerade umgekehrt wie alle anderen AJkali-
halogenide vom NaCl-Gittertyp. Nun hat aber das 
Lithiumion einen 2- bis 3-mal kleineren Radius als 
die Halogenionen, während alle anderen Alkali-
halogenide ein günstigeres Verhältnis in den Ionen-
radien aufweisen. Es bliebe daher zu untersuchen, 
inwieweit unser Punktladungsmodell mit nur pau-
schaler Berücksichtigung der Elektronenhüllenpolari-
sation und vor allem die Vernachlässigung der Ab -
stoßung bei übernächsten Nachbarn im Falle des LiF 
noch gerechtfertigt ist: eine Frage, die im Rahmen 
dieser Arbeit nicht entschieden werden soll. 

Ich danke Herrn Dr. F. W A H L , der die Arbeit an-
regte und sie durch wertvolle Diskussionen förderte, 
herzlich. Herrn Prof. Dr. F. Bopp spreche ich dafür 
meinen Dank aus, daß ich die Arbeit an seinem Institut 
ausführen durfte, desgleichen der Bayerischen Akade-
mie der Wissenschaften, auf deren Großrechenanlage 
TR 4 ich die umfangreichen numerischen Rechnungen 
durchführen konnte. 


